Efecto vasodilatador de factor de crecimiento vascular endotelial (VEGF) en arterias de tumores colorrectales

  • Título abreviado Vasodilatación y VEGF
    en tumores colorrectales
  • Abbreviated title Vasodilatation and VEGF
    in colorectal tumors
  • Autores O. García Villar
    E. Ferrero Herrero
    M. Granado García
    Á. L. García Villalón
  • Categoría Cirugía colorrectal
  • Fecha de recepción 20-09-2023
  • ISSN 3020-2655
  • Fecha de aceptación 17-10-2023
  • Páginas 6
  • Número 1:8

Efecto vasodilatador de factor de crecimiento vascular endotelial (VEGF) en arterias de tumores colorrectales

Vasodilator effect of vascular endothelial growth factor (VEGF) on arteries from colorectal tumors

Oscar García Villar*, Eduardo Ferrero Herrero*, Miriam Granado García**, Ángel Luis García Villalón**

* Servicio de Cirugía General, Aparato Digestivo y Trasplante de Órganos Abdominales. Hospital Universitario “12 de Octubre”, Universidad Complutense, Avenida de Córdoba, s/n, 28041 Madrid, España.
** Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 2, 28029 Madrid, España.

DOI: 10.14679/2328
Resumen: 

Para estudiar si el efecto del factor de crecimiento vascular endotelial (VEGF) está alterado en las arterias tumorales, se obtuvieron arterias mesentéricas irrigando el tumor y arterias mesentéricas de una región alejada del mismo (controles) de 4 pacientes intervenidos quirúrgicamente por cáncer colorrectal, y se montaron en una preparación para el registro de la contracción isométrica en un baño de órganos. La depolarización del músculo liso vascular mediante una concentración elevada de potasio (100 mM) produjo contracción que fue menor en las arterias del tumor que en las controles. En las arterias contraídas previamente con el análogo del tromoboxano U46618, el VEGF (10-8-10-9 M) produjo relajación que fue similar en las arterias del tumor que en las controles. Estos resultados indican que en las arterias de tumores colorrectales la capacidad vasoconstrictora del músculo liso está reducida pero el efecto vasodilatador del VEGF está preservado, lo que puede contribuir a mantener el flujo sanguíneo al tumor durante su crecimiento.
Palabras clave: arterias, músculo liso, tumor colorrectal.

Abstract: 

To study whether the effect of the vascular endothelial growth factor is altered in tumoral arteries, arteries mesenteric arteries supplying blood flow to colorectal tumors, and mesenteric arteries far from said tumors were obtained from 4 patients undergoing colectomy, and these arteries were prepared for isometric tension recording in an organ bath. Depolarization of the vascular smooth muscle with a high concentration of potassium (100 mM) produced contraction which was similar in the arteries from the tumor and in control arteries. After precontration with the thromboxane analog U46619, VEGF (10-8-10-9 M) produced relaxation which was similar in the arteries from the tumor and in control arteries. These results indicate than in the arteries from colorectal tumors the vasoconstrictor function of the smooth muscle is impaired, but the vasodilator effect of VEGF is preserved, which may contribute to maintaining the blood flow to the tumor during its growth.
Key words: arterias, músculo liso, tumor colorrectal.

Bibliografía
      1. Ferrero E, Labalde M, Fernández N, Monge L, Salcedo A, Narvaez R, et al.
      2. Response to endothelin-1 in arteries from human colorectal tumours: Role of endothelin receptors Exp Biol Med 2008;233:1602–1607.
      3. Ferrero E, Mauricio MD, Granado M, García-Villar O, Aldasoro M, Vila JM, et al. Tyrosine phosphorylation modulates the vascular responses of mesenteric arteries from human colorectal tumors Biomed Res Int 2013;313:2-8.
      4. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nature Medicine. 2003;9:669-676.
      5. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380: 435-439.
      6. Banai S, Jacklitach MT, Shou M, Lazarous DF; Scheinowitz M, Biro S, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardioum by vascular endotelial growth factor in dogs. Circulation 1994;89:2183-2189.
      7. Rapisarda A, Melillo G. Role of the VEGF/VEGFR Axis in Cancer Biology and Therapy Advances in Cancer Research, 2012;114:237-267.
      8. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4-25.
      9. Hicklin D, Ellis L. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005;23:1011-1027.
      10. Rosen LS. VEGF-targeted therapy: Therapeutic potential and recent advances. The oncologist. 2005;10:382-391.
      11. Storment JM, Meyer M, Osol G. Estrogen augments the vasodilatory effects of vascular endothelial growth factor in the uterine circulation of the rat. Am J Obstet Gynecol 2000;183:449-453.
      12. Ku DD, Zaleski JK, Liu SY, Brock TA. Vascular endothelial growth factor induced EDRF-dependent relaxation in coronary arteries. Am J Physiol 1993;256:H586-H592.
      13. Ashrafpour H, Huang N, Neligan PC, Forrest CR, Addison PD, Moses MA, et al. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am J Physiol Heart Circ Physiol 2003;286:H946-H954.
      14. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk.1/KDR activation of c-Scr. J Biol Chem. 1999;274:25130-25135.
      15. Wei W, Jin H, Chen ZW, Zioncheck TF, Yim AP, He GW. Vascular endothelial growth factor-induced nitric oxide- and PGI2-dependent relaxation in human internal mammary arteries: a comparative study with KDR and Flt-1 selective mutants. J Cardiovasc Pharmacol. 2004;44:615-621.
      16. Li B, Ogasawara AK, Yang R, Wei W, He G-W, Zioncheck TF, et al. KDR (VEGF receptor-2) is the major mediator for the hypotensive effect of VEGF. Hypertension 2007;39:1095-1100.
      17. Lim S, Zhang Y, Zhang D, Chen F, Hosaka K, Feng N, et al. VEGFR2-mediated vascular dilation as a mechanism of VEGF-induced anemia and bone marrow cell mobilization. Cell Rep. 2014;9:569-580.
      18. Lopez JJ, Laham RJ, Carrozza JP, Tofikuji M, Selke F, Bunting S, et al. Hemodynamic effects of intracoronary VEGF delivery: evidence of tachyphylaxis and NO dependence response. Am J Physiol Heart Circ Physiol 1997;273:H1317-H1323.
      19. Hein TW, Rosa RH Jr, Ren Y, Xu W, Kuo L. VEGF receptor-2–linked PI3K/calpain/SIRT1 activation mediates retinal arteriolar dilations to VEGF and shear stress. Invest Ophthalmol Vis Sci. 2015;56:5381–5389.
      20. Thengchaisri N, Lih Kuo L, Hein TW H2O2 Mediates VEGF- and Flow-Induced Dilations of Coronary Arterioles in Early Type 1 Diabetes: Role of Vascular Arginase and PI3K-Linked eNOS Uncoupling Int J Mol Sci 2022; 24:48.
      21. Yaegashi H, Takahashi T. Encasement and other deformations of tumor-embedded host arteries due to loss of medial smooth muscles. Morphometric and three-dimensional reconstruction studies on some human carcinomas. Cancer. 1990;65(5):1097-1103.
      22. Suzuki M, Takahashi T, Sato T. Medial regression and its functional significance in tumor-supplying host arteries. A morphometric study of hepatic arteries in human livers with hepatocellular carcinoma. Cancer. 1987;59(3):444-50.
      23. Metais C, Jianyi LI, Jian LI, Simons M, Sellke FW. Effects of coronary artery disease on expression and microvascular response to VEGF. Am J Physiol Heart Circ Physiol, 1998;275:H1411–H1418.
      24. Sellke FW, Wang SY, Stamler A, Lopez JJ, Li J, Li, Simons M. Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol Heart Circ Physiol. 1996;271:H713–H720.
      25. LeBlanc AJ, Shipley RD, Kang LS, Muller-Delp JM. Age impairs Flk-1 signaling and NO-mediated vasodilation in coronary arterioles, Am J Physiol Heart Circ Physiol, 2008;295:H2280–H2288.
      26. P. Brownbill P, McKeeman GC, Brockelsby JC, Crocker IP, Sibley CP. Vasoactive and permeability effects of vascular endothelial growth factor-165 in the term in vitro dually perfused human placental lobule. Endocrinology 2007;148:4734–4744.
      27. Jacobs ER, Zhu D, Gruenloh S, Lopez B, Medhora M. VEGF-induced relaxation of pulmonary arteries is mediated by endothelial cytochrome P-450 hydroxylase. Am J Physiol Lung Cell Mol Physiol. 2006;291:L369–L377.
      28. Liu MH, Jin H, Floten HS, Ren Z, Yim AP, He GW. Vascular endothelial growth factor-mediated, endothelium-dependent relaxation in human internal mammary artery. AnnThoracic Surg 2002;73:819824.
      29. Wei W, Chen ZW, Yang Q, Jin H, Furnary A, Yao WQ, et al. Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery. Vasc Pharmacol, 2007;46:253–259.

Cefalea hipertensiva y cáncer papilar

Hypertensive headache and papillary cancer

F.-J. Guadarrama González, J. Bernal Tirapo, C. Sánchez García, P. Yuste García, E. Ferrero Herrero

Ver ficha completa